

PENERAPAN REGRESI LINEAR UNTUK MEMPREDIKSI KEBUTUHAN PRODUKSI PADI

Andik Adi Suryanto¹, Asfan Muqtadir²

¹Universitas PGRI Ronggolawe, ²Universitas PGRI Ronggolawe ¹ Andikadisuryanto@gmail.com, ²asfanme@gmail.com

Abstrak

Penerapan Regresi Linear ini digunakan untuk mengetahui presdiksi kebutuhan produksi padi sehingga dapat digunakan sebagai bahan keputusan bagi instansi terkait. Regresi Linier merupakan suatu cara mengukur data prediksi melalui garis lurus sebagai gambaran hubungan korelasi diantara 2 variabel atau lebih. Prediksi regresi linier, digunakan sebagai teknik mempelajari bagaimana hubungan variabel-variabel pada proses peramalan data. Data yang digunakan diperoleh dari BPS Kabupaten Tuban. Sumber data yang dikumpulkan dalam penelitian ini adalah data yang yang diperoleh dari data kependudukan yang dipublikasikan oleh Badan Pusat Statistik (BPS) Kabupaten Tuban. Dari pengolahan data jumlah penduduk dan jumlah produksi padi pertahun pada tahun 2017 = 5347763 kwintal.

Kata Kunci: Padi, Regresi Linear, Produksi.

PENDAHULUAN

Regresi linear merupakan metode yang digunakan untuk mengukur 2 variabel atau lebih, cara mengukur datanya dengan menggunakan variabel dependen dan variable independent. Korelasi antar 2 variabel tersebut melalui garis lurus sebagai gambaran hubungan korelasinya [1].

Padi merupakan salah satu kebutuhan pangan yang digunakan untuk memenuhi kebutuhan karborhidrat bagi penduduk. Dengan perkembangan jumlah penduduk meningkat tiap tahun, maka kebutuhan kebutuhan produksi meningkat pula berbanding lurus dengan jumlah pertumbuhan penduduk [3].

Berdasarkan permasalahan tersebut peneliti menggunakan salah satu metode peramalan yaitu regresi linear untuk memprediksi kebutuhan produksi padi.

METODE PENELITIAN

Regresi Linear

Fungsi Prediksi merupakan bagian dari fungsi minor data mining. Prediksi adalah suatu cara untuk mencari kemungkinan hasil dari suatu hal pada masa akan datang.

Pada teknologi data mining, metode peramalan digunakan sebagai alat bantu memprediksi kemungkinan akan datang berdasarkan buktibukti temuan pada data.proses prediksi berhubungan erat dengan perhitungan matematik dan statistik.

Langkah prediksi dapat dilakukan menggunakan perhitungan rumus *regresi linier*. Ada 2 jenis rumus *regresi* sebagai langkah proses analisis prediksi yaitu, *regresi linear* sederhana dan *regresi linear* berganda. Cara membaca hubungan korelasi data hipotesis hasil analisis prediksi dilakukan melalui analisis statistik.

Regresi Linier merupakan suatu cara mengukur data prediksi melalui garis lurus sebagai gambaran hubungan korelasi diantara 2 variabel atau lebih [1]. Prediksi regresi linier, digunakan sebagai teknik mempelajari bagaimana hubungan variabel-variabel pada proses peramalan data.

Variabel adalah besaran yang berubahubah nilainya. Ada 2 tipe variabel dalam *regresi linier* yaitu: variabel pemberi pengaruh dan variabel terpengaruh. Variabel pemberi pengaruh digunakan sebagai sebab, sedangkan variabel terpengaruh sebagai akibat.

HASIL DAN PEMBAHASAN Hasil Regresi Linear

Penyelesaian pengunaan regresi linear sederhana untuk memprediksi kebutuhan produksi padi seperti tahapan dibawah ini :

- Penentuan Tujuan Penggunan metode regresi linear sederhan ini untuk memprediksi jumlah produksi padi.
- 2. Identifikasi variable penyebab dan akibat

Dari data yang diperoleh digolongan menjadi 2 variabel faktor penyebab (X) dan variabel akibat (Y) sebagai berikut:

Variabel faktor penyebab (X) = Jumlah penduduk

Variabel akibat (Y) = Jumlah Produksi Padi

3. Pengumpulan data

Data yang digunakan mulai tahun 2000 sampai 2017, sebagai berikut

Tahun	Jumlah	Jumlan	
	Penduduk	Produksi padi	
		dalam	
		Kwintal	
2000	1021920	3898622	
2001	1027546	3802048	
2002	1035341	3849083	
2003	1058979	3820119	
2004	1042718	3959801	
2005	1074109	4075379	
2006	1124508	4075390	
2007	1127416	4585170	
2008	1137708	4543510	
2009	1139052	4710640	
2010	1259996	5115100	
2011	1258816	5176300	
2012	1290394	5890660	
2013	1288975	4888390	
2014	1291665	5376630	
2015	1304080	5463100	
2016	1315155	5843060	
2017	1267886	5894210	

Tabel 1. Tabel Jumlah Penduduk dan Produksi Padi

- 4. Model persamaan regresi linear sederhana Y=a+bX (3)
- 5. Hasil prediksi terhadap variabeal penyebab atau akibat produksi padi tiap tahun dari tahun 2000 2017 menggunakan regresi linear sederhana yaitu

Tabel 2. Hasil Prediksi pertahun

Tahun	Jumlah Penduduk Registrasi (X)	Jumlah Produksi Padi Dalam Kwintal (Y)	Nilai Prediksi Produksi Padi dalam Kwintal
2000	1021920	3898622	0

2001	1027546	3802048	3802048
2002	1035341	3849083	3828080
2003	1058979	3820119	3814568
2004	1042718	3959801	3863785
2005	1074109	4075379	3996009
2006	1124508	4075390	4092447
2007	1127416	4585170	4320132
2008	1137708	4543510	4433516
2009	1139052	4710640	4514351
2010	1259996	5115100	5178435
2011	1258816	5176300	5173376
2012	1290394	5890660	5539802
2013	1288975	4888390	5368272
2014	1291665	5376630	5382631
2015	1304080	5463100	5457309
2016	1315155	5843060	5577583
2017	1267886	5894210	5347763

Pada tabel 2 merupakan hasil prediksi dari persamaan regresi linear. Contohnya pada tahun 2017 hasil prediksi 5347763 kwintal hari produksi padinya.

KESIMPULAN

Pada tahun 2017 hasil prediksi produksi padi menggunakan regresi linear sebesar 5347763 kwintal padi. Untuk perbaikan penelitian ini diharapkan dilakukan keakuratan hasil regresi linear dengan metode lain agar hasil prediksi lebih valid.

DAFTAR PUSTAKA

- Susanto, Sani dan Suryadi, Dedy, 2010;
 Pengantar Data Mining Mengali
 Pengetahuan dari Bongkahan Data, CV
 ANDI Offset, Yogyakarta
- [2] *Aak. 1990*. Budidaya Tanaman *Padi*. Kanisius. Yogyakarta. pp: 15, 27
- [3] Yusuf, A, 2010, Teknologi Budidaya Pada Sawah Mendukung SL-PTT.BPTP, Sumatera Utara
- [4] Subagyo, Pangestu, 1986, Forecasting Konsep dan Aplikasi, Yogyakarta, BPPE UGM
- [5] Pakaja, 2012, Peramalan Penjualan Mobil Menggunakan Jaringan Syaraf Tiruan dan Certainty Factor, *EECCIS*, Vols. 6, No.1,.