UJI PERFORMANSI PADA BATERAI MOTOR LISTRIK BLDC
Keywords:
performansi, motor listrik, brushless direct current 3 phaseAbstract
Kendaraan listrik merupakan model transportasi yang dapat digunakan untuk mengurangi konsumsi bahan bakar. Salah satu solusinya adalah dengan menggunakan energi listrik dalam transportasi, seperti mobil listrik, sepeda motor, dan kereta api. Sistem kelistrikan penting dalam kenyamanan dan keamanan pengendara yang mengendarai motor DC, baterai lithium, dan pengontrol sebagai komponen utama. Pada penelitian ini menggunakan aplikasi Brushless Direct Current (BLDC) sebagai penggerak sistem. Motor listrik ini diaplikasikan pada E-BIKE tipe BLDC dengan daya 1000 Watt dan 2000 watt, serta tegangan input 60Hz dan kecepatan putaran 500 rpm dan 1000 rpm dengan baterai BMS sebesar 3.75V 25Ah dan 60 25Ah. Model sepeda motor listrik E-BIKE tipe BLDC ini dapat konversikan secara linier terhadap tromol dengan diameter roda 17 inci. Pada pengujian motor listrik BLDC 1000 Watt didapatkan hasil konsumsi energi dengan jarak tempuh 3 km sebesar 0,06 kWh seharga Rp. 81.12 -. Jarak 6 km menggunakan energi 0,13 kWh dengan harga Rp. 175,76 dengan jarak 8.2km. Pada pengujian motor listrik BLDC 2000 Watt dengan kecepatan 30-40 rpm dengan jarak 50 km, tipe tinggi dengan kecepatan 40-60 rpm dengan jarak 40-60 rpm dengan jarak 30 km, dan tipe turbo dengan kecepatan 60-80 rpm dengan jarak tempuh 20 km. Dalam pengetesan sepeda motor listrik BLDC tanpa beban, yaitu pada kecepatan tetap, semakin besar penggunaan daya dan semakin sedikit waktu baterai dapat bertahan.
References
Y. Park, H. Kim, H. Jang, S. H. Ham, J. Lee, and D. H. Jung, “Efficiency Improvement of Permanent Magnet BLDC with Halbach Magnet Array for Drone,” IEEE Trans. Appl. Supercond., vol. 30, no. 4, Jun. 2020, doi: 10.1109/TASC.2020.2971672.
Slamet Riyadi, “Pengembangan Sistem Kelistrikan Motor Brushless Direct Current Speed Uwp V2.2 Kapasitas 2000 Watt,” Journal of System Engineering and Technological Innovation (JISTI), 2022. http://jurnal.uwp.ac.id/ft/index.php/JISTI/article/view/10 (accessed Aug. 31, 2022).
J. Choi, J. H. Lee, Y. G. Jung, and H. Park, “Enhanced efficiency of the brushless direct current motor by introducing air flow for cooling,” Heat Mass Transf. 2020 566, vol. 56, no. 6, pp. 1825–1831, Jan. 2020, doi: 10.1007/S00231-020-02827-8.
S. Kıvrak, T. Özer, and Y. Oğuz, “Design and implementation of dspic33fj32mc204 microcontroller–based asynchronous motor voltage/frequency speed control circuit for the ventilation systems of vehicles:,” https://doi.org/10.1177/0020294019858097, vol. 52, no. 7–8, pp. 1039–1047, Jul. 2019, doi: 10.1177/0020294019858097.
M. Ebadpour, M. B. B. Sharifian, and E. Babaei, “Modeling and synchronized control of dual parallel brushless direct current motors with single inverter,” Comput. Electr. Eng., vol. 70, pp. 229–242, Aug. 2018, doi: 10.1016/J.COMPELECENG.2017.08.016.
A. Ghosh, S. B. Santra, P. Biswal, and P. Chhotaray, “Bi-directional converter with modified multi-carrier PWM technique controlled brushless DC motor drive for compressor system,” Int. Conf. Commun. Signal Process. ICCSP 2016, pp. 623–629, Nov. 2016, doi: 10.1109/ICCSP.2016.7754215.
P. Ramesh, A. Ranjeev, C. Santhakumar, J. Vinoth, and C. Bharatiraja, “Sensor-less field orientation control for brushless direct current motor controller for electric vehicles,” Mater. Today Proc., vol. 65, pp. 277–284, Jan. 2022, doi: 10.1016/J.MATPR.2022.06.168.
B. Melka, J. Smolka, J. Hetmanczyk, Z. Bulinski, D. Makiela, and A. Ryfa, “Experimentally validated numerical model of thermal and flow processes within the permanent magnet brushless direct current motor,” Int. J. Therm. Sci., vol. 130, pp. 406–415, Aug. 2018, doi: 10.1016/J.IJTHERMALSCI.2018.04.029.
S. B. Utomo, J. F. Irawan, W. Hadi, and B. Sastiko, “Design of 6S8P axial flux permanent magnet brushless DC motor with double-sided rotor,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1034, no. 1, p. 012053, Feb. 2021, doi: 10.1088/1757-899X/1034/1/012053.
S.-H. Kim, “Brushless direct current motors,” Electr. Mot. Control, pp. 389–416, Jan. 2017, doi: 10.1016/B978-0-12-812138-2.00010-6.
S. Ravichandran et al., “A New Metaheuristic Optimization Algorithms for Brushless Direct Current Wheel Motor Design Problem,” Comput. Mater. Contin., 2021, doi: 10.32604/cmc.2021.015565.
H. Gruebler, S. Leitner, A. Muetze, and G. Schoener, “Improved Switching Strategy for a Single-Phase Brushless Direct Current Fan Drive and its Impact on Efficiency,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6050–6059, Nov. 2018, doi: 10.1109/TIA.2018.2850017.
I. Anshory, I. Robandi, and Wirawan, “Monitoring and optimization of speed settings for Brushless Direct Current (BLDC) using Particle Swarm Optimization (PSO),” Proc. - 2016 IEEE Reg. 10 Symp. TENSYMP 2016, pp. 243–248, Jul. 2016, doi: 10.1109/TENCONSPRING.2016.7519412.
C. M. Lee, H. S. Seol, J. Y. Lee, S. H. Lee, and D. W. Kang, “Optimization of Vibration and Noise Characteristics of Skewed Permanent Brushless Direct Current Motor,” IEEE Trans. Magn., vol. 53, no. 11, Nov. 2017, doi: 10.1109/TMAG.2017.2711269.
Y. Karabacak and A. Uysal, “Fuzzy logic controlled brushless direct current motor drive design and application for regenerative braking,” IDAP 2017 - Int. Artif. Intell. Data Process. Symp., Oct. 2017, doi: 10.1109/IDAP.2017.8090282.
R. M. Pindoriya, A. K. Mishra, B. S. Rajpurohit, and R. Kumar, “An Analysis of Vibration and Acoustic Noise of BLDC Motor Drive,” IEEE Power Energy Soc. Gen. Meet., vol. 2018-August, Dec. 2018, doi: 10.1109/PESGM.2018.8585750.
M. Skora, P. Ewert, and C. T. Kowalski, “Selected Rolling Bearing Fault Diagnostic Methods in Wheel Embedded Permanent Magnet Brushless Direct Current Motors,” Energies 2019, Vol. 12, Page 4212, vol. 12, no. 21, p. 4212, Nov. 2019, doi: 10.3390/EN12214212.