PENILAIAN SOAL-SOAL PILIHAN BERGANDA MENGGUNAKAN ANALISIS BUTIR DAN METODE FUZZY MAMDANI

Christina R. N. Yedidya¹⁾, Bambang Susanto²⁾ dan Lilik Linawati²⁾

1) Mahasiswa Program Studi Matematika FSM UKSW
2) Dosen Pembimbing Program Studi Matematika
yedidyachristina@yahoo.com¹⁾ bsusanto5@gmail.com²⁾ lina.utomo@yahoo.com²⁾

Abstrak

Soal-soal evaluasi yang berbentuk pilihan berganda haruslah memenuhi beberapa kriteria agar dapat dikatakan sebagai alat evaluasi yang baik. Satu set soal pilihan berganda terdiri dari 35 soal, yang masing-masing soal memiliki 4 opsi jawaban untuk mata pelajaran Matematika kelas VII telah diujikan pada siswa kelas VII di SMP Kristen Bentara Wacana Muntilan. Pada jawaban siswa yang diperoleh dilakukan analisis butir hingga didapatkan koefisien validitas, derajat kesukaran dan daya beda untuk menentukan tingkat kualitas soal. Selanjutnya untuk menentukan kualitas soal digunakan pendekatan logika fuzzy yaitu Sistem Inferensi Fuzzy yang merupakan kerangka komputasi berdasar teori himpunan fuzzy, aturan fuzzy berbentuk *IF-THEN* dan penalaran fuzzy. Adapun metode inferensi yang digunakan dalam makalah ini adalah metode Mamdani. Berdasarkan analisis yang dilakukan diperoleh 15 soal dengan kualitas baik, 15 soal perlu diperbaiki dan 5 soal disarankan untuk tidak dipakai.

Kata kunci: Analisis Butir, Evaluasi, Logika Fuzzy, Metode Mamdani.

I. PENDAHULUAN

Dalam menentukan tingkat pemahaman seseorang perlu diadakan suatu pengukuran dan penilaian terlebih dahulu. Kegiatan mengukur dan menilai ini biasa kita sebut dengan istilah evaluasi. Menurut Arikunto (1984) evaluasi adalah suatu kegiatan penilaian yang didahului dengan kegiatan pengukuran. Salah satu alat evaluasi adalah soal-soal berbentuk pilihan berganda yang merupakan bentuk soal dengan beberapa kemungkinan jawaban (opsi) yang telah disediakan. Seperangkat soal sebagai salah satu alat evaluasi haruslah memenuhi beberapa kriteria agar dapat dikatakan berkualitas baik. Penilaian kualitas soal dapat dilakukan dengan analisis butir. Analisis butir adalah suatu prosedur sistematis yang memberikan informasi-informasi khusus terhadap butir soal (Arikunto,1984:157). Teknik analisis butir dapat menghasilkan koefisien validitas, derajat kesukaran, daya beda soal dan efektifitas opsi, sehingga setiap butir soal akan dapat ditentukan statusnya. Status soal inilah yang menunjukan kualitas dari setiap butir soal.

Untuk menentukan status soal, maka koefisien valiiditas, derajat kesukaran dan daya beda dinyatakan dalam beberapa kategori. Kombinasi kategori dari besaran-besaran tersebut akan menentukan suatu soal dikatakan baik/diterima, perlu diperbaiki atau ditolak. Misalkan sebuah soal mempunyai koefisien validitas 0,5, derajat kesukaran 0,3 dan daya beda 0,4, maka soal tersebut disimpulkan sebagai soal yang baik/diterima. Soal lain dengan koefisien validitas sama yaitu 0,5, derajat kesukaran0,65 dan daya beda 0,6 juga disimpulkan sebagai soal yang baik/diterima. Jika dicermati nilai derajat kesukaran soal adalah 0,3 dan soal yang lain adalah 0,65, pada analisis butir kedua nilai

derajat kesukaran ini sama-sama dikategorikan dalam derajat kesukaran "sedang" padahal perbedaan kedua nilai ini cukup signifikan dalam rentang derajat kesukaran antara 0 sampai dengan 1. Hal ini menyebabkan terjadinya keambiguan dalam penentuan status soal. Untuk mengatasi keambiguan ini dapat digunakan logika fuzzy yang memperhatikan derajat keanggotaan sebuah nilai dalam suatu himpunan fuzzy tertentu. Koefisien validitas, derajat kesukaran dan daya beda merupakan suatu variabel linguistik dengan nilai-nilai linguistik yang terkandung didalamnya. Nilai-nilai linguistik ini digunakan dalam pembentukan himpunan-himpunan fuzzy yang selanjutnya akan dikelola dengan Sistem Inferensi Fuzzy Mamdani untuk mendapatkan status soal yang lebih teliti.

II. KAJIAN TEORI

Analisis Butir

Teknik analisis butir dapat membantu mengidentifikasi kualitas butir-butir soal. Proses pengidentifikasian ini dilakukan dengan menganalisis koefisien validitas, derajat kesukaran, daya beda dan efektifitas opsinya terlebih dahulu.

Koefisien Validitas

Validitas suatu soal sebagai alat evaluasi adalah ketepatan mengukur yang dimiliki setiap soal dalam mengukur apa yang seharusnya diukur oleh soal tersebut. Suatu soal dapat dikatakan memiliki koefisien validitas yang tinggi atau dapat dinyatakan valid, jika ada korelasi positif yang signifikan antara skor item dengan skor totalnya. Karena data yang digunakan berupa data diskret murni dan data kontinyu, maka teknik korelasi yang tepat untuk digunakan adalah teknik korelasi point biserial. Dimana angka indeks korelasi (r_{pbi}) yang dalam hal ini digunakan sebagai angka koefisien validitas dapat diperoleh dengan menggunakan rumus (Hidayat dkk, 2011):

$$r_{pbi} = \frac{r_p - r_t}{s_t} \sqrt{\frac{p}{(1-p)}} \tag{1}$$

dengan

 \bar{Y}_{p} : rata-rata skor pada siswa yang menjawab benar soal.

 \overline{Y}_t : rata-rata skor seluruh siswa.

 S_t : standard deviasi skor seluruh siswa

p: proporsi jumlah jawaban benar terhadap jumlah semua jawaban siswa

Dalam pemberian interpretasi terhadap tingkat validitas, Arikunto menentukan kategori koefisien validitas yang diperoleh untuk dapat memberikan interpretasi terhadap kevalidan suatu soal seperti tersaji pada Tabel 1.

Tabel 1 Interpretasi Tingkat Validitas

Nilai Koefisien Korelasi	Kategori
Kurang dari 0	Tidak Valid
0-0,2	Validitas Sangat Rendah
0,2-0,4	Validitas Rendah
0,4-0,6	Validitas Cukup
0,6-0,8	Validitas Tinggi
0.8-1	Validitas Sangat Tinggi

Derajat Kesukaran

Untuk menentukan apakah soal yang digunakan sebagai alat evaluasi memiliki derajat kesukaran yang memadai atau tidak dapat dilakukan dengan menentukan angka indeks kesukarannya. Soal yang baik memiliki derajat kesukaran "sedang". Mencari nilai indeks kesukaran item dapat diperoleh dengan menggunakan rumus yang dikemukakan *Du Bois* seperti pada rumus (2) (Sudijono,2007).

$$P = \frac{N_p}{N} \tag{2}$$

di mana:

P = angka indeks kesukaran item (Proporsi)

N_p= banyak peserta yang dapat menjawab dengan betul.

N = jumlah peserta yang mengikuti evaluasi.

Derajat kesukaran soal berkisar antara 0 sampai dengan 1. Semakin rendah nilai derajat kesukaran berarti semakin sukar soalnya. Interpretasi yang banyak digunakan sebagai pegangan adalah dari Robert L. Thorndike dan Elizabeth Hagen (Sudijono, 2007) dengan kriteria seperti pada Tabel 2.

Tabel 2 Interpretasi Tingkat Kesukaran

Indeks Kesukaran (P)	Kategori
Kurang dari 0,30	Sukar
0,30 - 0,70	Cukup (sedang)
Lebih dari 0,70	Mudah

Daya Beda

Daya beda soal adalah kemampuan suatu soal untuk dapat membedakan peserta evaluasi yang berkemampuan tinggi dan yang berkemampuan rendah, yang mana hal ini dilihat berdasarkan jumlah jawaban betul yang dihasilkan oleh masing-masing peserta evaluasi. Analisis ini ditujukan untuk melihat apakah suatu soal sudah berfungsi sebagai pembeda yang baik atau belum. Suatu soal dikatakan berdaya beda baik jika peserta evaluasi yang dianggap berkemampuan tinggi memiliki jawaban betul dan yang dianggap berkemampuan rendah memiliki jawaban salah. Untuk mengetahui daya beda soal bentuk pilihan ganda dapat dipergunakan rumus korelasi *biserial* (rbis) seperti berikut (Hidayat dkk, 2011):

$$r_{bis} = \frac{r_p - r_t}{s_t} \cdot \frac{p}{u} \tag{3}$$

dengan

 Y_p : rata-rata skor pada siswa yang menjawab benar soal.

 Y_t : rata-rata seluruh siswa.

 S_t : standard deviasi seluruh siswa

u: ordinat kurva normal

p: proporsi jumlah jawaban benar terhadap jumlah semua jawaban siswa

Nilai daya beda dapat diklasifikasikan seperti pada Tabel 3 (Arikunto, 1984:171).

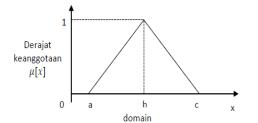
Tabel 3 Interpretasi Daya Beda

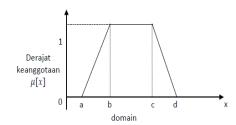
Daya beda Kategori Kurang dari 0,20 Jelek 0,20 – 0,40 Cukup

0,40 – 0,70 Baik 0,70 - 1 Baik Sekali

Efektifitas Opsi

Pada soal pilihan berganda setiap butir soal selalu memiliki beberapa alternatif jawaban yang terdiri dari satu buah jawaban sesungguhnya (opsi kunci) dan beberapa jawaban salah yang biasa disebut opsi pengecoh atau distraktor. Sebuah pengecoh dibuat dengan tujuan agar peserta evaluasi akan menghadapi keragu-raguan dalam memilih jawaban sesungguhnya. Sebuah opsi pengecoh dapat dikatakan telah menjalankan fungsinya dengan baik jika sekurang-kurangnya sudah dipilih oleh 5% dari keseluruhan peserta yang mengikuti evaluasi tersebut. Analisis ini tidak digunakan dalam penentuan status soal karena cenderung bisa langsung dilakukan perbaikan terhadap opsi yang kurang efektif.


Status Soal


Penilaian kualitas soal dengan analisis butir dilakukan dengan mempertimbangkan koefisien validitas yang terkandung dalam suatu soal terlebih dahulu. Jika suatu soal tidak valid maka soal jelas tidak dapat dikatakan baik, namun jika nilai validitas sudah cukup maka kualitas soal dapat dipertimbangakan dengan melihat nilai derajat kesukaran dan daya bedanya. Jika dua atau lebih nilai diantara ketiga nilai ini sudah memenuhi kriteria maka soal dapat dikatakan baik. Jika hanya salah satu diantara ketiga nilai ini memenuhi maka soal dapat diteliti dan diperbaiki sebelum digunakan kembali. Tetapi jika ketiga nilai tidak memenuhi maka soal sebaiknya tidak digunakan lagi.

Sistem Inferensi Fuzzy

Derajat kesukaran dikategorikan "sedang" jika nilai derajat kesukaran berada antara 0,3 sampai dengan 0,7, maka soal dengan derajat kesukaran 0,3 akan dimasukan dalam kategori yang sama dengan soal yang memiliki derajat kesukaran 0,65. Hal ini menunjukan bahwa batas untuk kategori "sedang" tersebut tidak bisa ditentukan secara tegas. Untuk mengatasi hal ini, digunakan fungsi keanggotaan. Nilai dari fungsi keanggotaan ini disebut derajat keanggotaan suatu unsur dalam suatu himpunan fuzzy. Derajat keanggotaan dinyatakan dalam rentang nilai 0 sampai dengan 1. Dengan kata lain, fungsi keanggotaan dari suatu himpunan fuzzy A dalam semesta X adalah pemetaan μ_A dari X ke selang [0,1], yaitu μ_A : $X \rightarrow [0,1]$. Nilai fungsi $\mu_A(x)$ menyatakan derajat keanggotaan unsur $x \in X$ dalam himpunan fuzzy A (Susilo,2003:48)/

Beberapa fungsi yang bisa digunakan untuk menyatakan nilai keanggotaan fuzzy adalah representasi segitiga dan kurva trapesium yang pada dasarnya merupakan gabungan antara dua garis linear seperti terlihat pada Gambar 1a dan 1b.

Gambar 1a Representasi Kurva Segitiga Gambar 1b Representasi Kurva Trapesium

Fungsi keanggotaannya tersaji pada persamaan (4a) untuk kurva segigiga dan persamaan (4b) untuk kurva trapesium.

Prosiding Seminar Nasional Matematika dan Pendidikan Matematika ISBN: 978~602~70609~0~6 Tuban, 24 Mei 2014

$$\mu[x] = \begin{cases} 0; & x \le a \text{ atau } x \ge c \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ \frac{(c-x)}{(c-b)}; & b \le x \le c \end{cases}$$

$$(4a)$$

$$\mu[x] = \begin{cases} 0; & x \le a \text{ atau } x \ge c \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ \frac{(c-x)}{(c-b)}; & b \le x \le c \end{cases}$$

$$\mu[x] = \begin{cases} 0; & x \le a \text{ atau } x \ge c \\ \frac{(x-a)}{(b-a)}; & a \le x \le b \\ 1; & b \le x \le c \\ \frac{(d-x)}{(d-c)}; & x \ge d \end{cases}$$

$$(4a)$$

dengan:

a, b, c dan d = nilai domain

= nilai input yang akan diubah ke dalam bilangan fuzzy

Dari hasil analisis butir dapat dilakukan pendekatan logika fuzzy yaitu Sistem Inferensi Fuzzy. Dalam membangun sebuah sistem inferensi fuzzy salah satu metode panalaran yang sering digunakan adalah metode Mamdani. Tahap-tahap yang diperlukan untuk menghasilkan output dengan metode ini adalah sebagai berikut (Kusumadewi, 2004):

1. Pembentukan himpunan fuzzy

Tahapan pertama pada metode Mamdani adalah menentukan variabel fuzzy dan membentuk himpunan-himpunan fuzzy untuk semua variabel, baik variabel input maupun variabel output. Kemudian ditentukan pula fungsi keanggotaan untuk setiap himpunan yang telah dibentuk.

2. Aplikasi fungsi implikasi

Implikasi pada metode Mamdani didasarkan pada asumsi bahwa implikasi fuzzy pada dasarnya bersifat lokal, dalam arti bahwa implikasi

Jika x adalah A, maka y adalah B

hanya berbicara mengenai keadaan dimana x adalah A dan y adalah B saja, dan tidak mengenal keadaan lain diluar itu (Susilo,2003:146). Fungsi implikasi yang digunakan pada metode Mamdani adalah fungsi Min yang dapat dinyatakan sebagai berikut:

$$\mu(x, y) = \min\{\mu_A(x), \mu_B(y)\}$$
 (5)

dengan

 $\mu(x, y) = \text{fungsi keanggotaan}$

 $\mu_A(x)$ = derajat keanggotaan x dari himpunan fuzzy A.

 $\mu_B(y)$ = derajat keanggotaan y dari himpunan fuzzy B.

3. Komposisi Aturan

Tidak seperti pada penalaran monoton, apabila sistem terdiri dari beberapa aturan maka inferensi diperoleh dari kumpulan dan korelasi antar aturan. Ada 3 metode yang digunakan untuk melakukan inferensi sistem fuzzy, yaitu : Max, Additive dan Probabilistik OR. Pada metode Max, solusi himpunan fuzzy diperoleh dengan cara mengambil nilai maksimum aturan, kemudian menggunakannya untuk memodifikasi daerah fuzzy, dan mengaplikasikannya ke output dengan menggunakan operator OR (union). Jika semua proporsi telah dievaluasi, maka output akan berisi suatu himpunan fuzzy yang merefleksikan kontribusi dari tiaptiap proporsi. Secara umum dapat dituliskan:

$$\mu_{sf}[x_i] = \max(\mu_{kf}[x_i], \mu_{kf}[x_i])$$
 (6)

dengan

 $\mu_{sf}[x_i]$ = nilai keanggotaan solusi fuzzy sampai aturan ke-i.

 $\mu_{kf}[x_i]$ = nilai keanggotaan konsekuen fuzzy aturan ke-i.

4. Penegasan (defuzzifikasi)

Input dari proses defuzzifikasi adalah suatu himpunan fuzzy yang diperoleh dari suatu komposisi aturan-aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan pada himpunan fuzzy tersebut. Sehingga diberikan suatu himpunan fuzzy dalam range tertentu, maka harus dapat diambil suatu nilai tegas tertentu sebagai output. Salah satu metode defuzzifikasi adalah dengan metode Centroid, untuk semesta diskrit digunakan persamaan:

$$z = \frac{\sum z_j \mu(z_j)}{\sum \mu(z_j)} \tag{7}$$

dengan

z = nilai hasil penegasan (defuzzifikasi)

 z_i = nilai keluaran pada aturan ke-j.

 $\mu(z_i)$ = derajat keanggotaan nilai keluaran pada aturan ke-j.

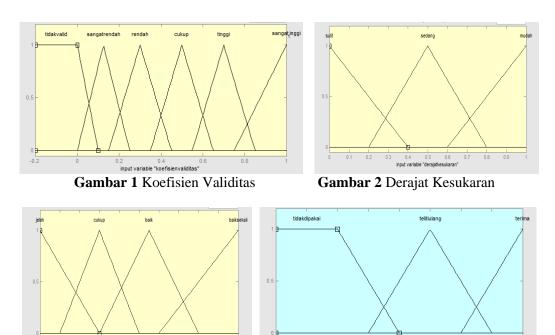
III. METODE PENELITIAN

Penelitian dilakukan terhadap hasil jawaban 58 siswa di SMP Kristen Bentara Wacana Muntilan untuk 35 butir soal pilihan ganda yang dilaksanakan pada Semester Ganjil tahun ajaran 2013-2014. Dalam penelitian ini akan ditentukan kualitas soal berdasarkan analisis butir dan metode Mamdani pada Sistem Inferensi Fuzzy. Untuk itu ditempuh langkah-langkah sebagai berikut :

- 1. Mempersiapkan data hasil jawaban siswa dengan memberi nilai 1 untuk jawaban benar dan 0 untuk jawaban salah pada setiap butir soal ke dalam tabel.
- 2. Menganalisis data yang telah dipersiapkan dengan teknik analisis butir yaitu menghitung koefisien validitas dengan menggunakan rumus (1), menghitung derajat kesukaran dengan menggunakan rumus (2) dan menghitung daya beda soal dengan menggunakan rumus (3).
- 3. Menentukan kualitas soal menggunakan Sistem Inferensi Fuzzy metode Mamdani dengan langkah-langkah :

Langkah 1: Pembentukan himpunan fuzzy.

Tabel 4 Himpunan Fuzzy untuk Koefisien Validitas, Derajat Kesukaran dan Daya Beda


Variabel	Himpunan	Domain	Fungsi Keanggotaan	Parameter
	Tidak Valid	[-0,2:0]	trapesium	[-0.2;-0.2;0;1]]
	Validitas Sangat Rendah	[0:0,2]	Segitiga	[0;0,125;0,25]
Koefisien	Validitas Rendah	[0,2:0,4]	Segitiga	[0,15;0,3;0,45]
Validitas	Validitas Cukup	[0,4:0,6]	Segitiga	[0,35;0,5;0,65]
	Validitas Tinggi	[0,6:0,8]	Segitiga	[0,55;0,7;0,85]
	Validitas Sangat Tinggi	[0,8:1]	trapesium	[0,75;1;1,25;1,25]
Derajat	Sulit	[0:0,3]	Segitiga	[-0,4;0;0,4]
Kesukaran	Sedang	[0,3:0,7]	Segitiga	[0,2;0,5;0,8]
Kesukaran	Mudah	[0,7:1]	Segitiga	[0,6;1;1,4]
Daya Beda	Jelek	[0:0,2]	Segitiga	[-0,3;0;0,3]

Prosiding Seminar Nasional Matematika dan Pendidikan Matematika ISBN: 978-602-70609-0-6 Tuban, 24 Mei 2014

	Cukup	[0,2:0,4]	Segitiga	[0,1;0,3;0,5]
	Baik	[0,4:0,7]	Segitiga	[0,3;0,55;0,8]
	Baik Sekali	[0,7:1]	Segitiga	[0,6;1;1,4]
	Tidak Dipakai	[-1:1]	Trapesium	[-1;-1;0;1]
Status Soal	Teliti Ulang / Perbaiki	[1:2]	Segitiga	[0,5;1,5;2,5]
	Terima	[2:3]	Trapesium	[2;3;4;4]

Variabel input yang digunakan dalam penelitian ini adalah variabel koefisien validitas, derajat kesukaran dan daya beda. Sedangkan variabel outputnya adalah variabel status soal. Dari variabel yang telah dimunculkan dapat disusun domain himpunan fuzzy. Berdasarkan domain tersebut, selanjutnya ditentukan fungsi keanggotaan dari masing-masing variabel seperti tertera pada Tabel 4. Himpunan fuzzy dari variabel input koefisien validitas, derajat kesukaran dan daya beda serta variabel output status soal direpresentasikan pada Gambar 1, 2, 3 dan 4.

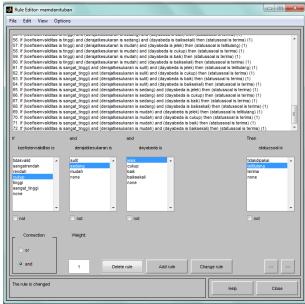
Gambar 3 Daya Beda

Gambar 4 Status Soal

Langkah 2 : Aplikasi fungsi Implikasi.

Setelah himpunan fuzzy terbentuk, maka dilakukan pembentukan aturan fuzzy. Aturan-aturan ini digunakan untuk menyatakan relasi antara variabel-variabel input terhadap variabel outputnya. Tiap aturan merupakan suatu implikasi dengan operator yang menghubungkan input satu dengan input lainnya adalah operator *AND* dan operator yang memetakan antara input-output adalah operator *IF-THEN*. Berdasar kategori dalam status soal, maka dapat dibentuk aturan-aturan pada Tabel 5.

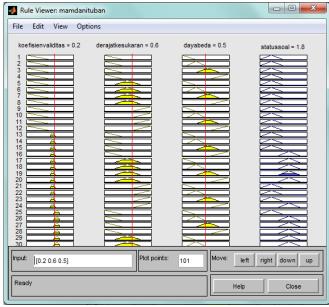
Tabel 5 Aturan-aturan Fuzzy


Aturan ke		Koefisien Validitas		Derajat Kesukaran		Daya Beda		Status Soal
1	IF		AND		AND	Jelek	THEN	Tidak dipakai
2	IF		AND	Sulit	AND	Cukup	THEN	Tidak dipakai
3	IF		AND	Odili	AND	Baik	THEN	Tidak dipakai
4	IF		AND		AND	Baik sekali	THEN	Tidak dipakai
5	IF		AND		AND	Jelek	THEN	Tidak dipakai
6	IF	Tidak Valid	AND	Sedang	AND	Cukup	THEN	Tidak dipakai
7	IF		AND	3	AND	Baik	THEN	Tidak dipakai
8 9	IF IF		AND AND		AND AND	Baik sekali Jelek	THEN THEN	Tidak dipakai Tidak dipakai
10	ïF		AND		AND	Cukup	THEN	Tidak dipakai
11	ïF		AND	Mudah	AND	Baik	THEN	Tidak dipakai
12	IF		AND		AND	Baik sekali	THEN	Tidak dipakai
Aturan		Koefisien		Derajat		Daya Beda		Status Soal
ke		Validitas		Kesukaran		Daya Beda		Status Stat
13	IF		AND		AND	Jelek	THEN	Tidak dipakai
14	ΙF		AND	Sulit	AND	Cukup	THEN	Tidak dipakai
15 16	IF IF		AND		AND	Baik	THEN	Tidak dipakai
16 17	IF		AND AND		AND AND	Baik sekali Jelek	THEN THEN	Perbaiki Perbaiki
18	ïF	validitas	AND		AND	Cukup	THEN	Perbaiki
19	iF	sangat	AND	Sedang	AND	Baik	THEN	Perbaiki
20	ÏF	rendah	AND		AND	Baik sekali	THEN	Perbaiki
21	IF		AND		AND	Jelek	THEN	Tidak dipakai
22	IF		AND	Mudah	AND	Cukup	THEN	Tidak dipakai
23	IF		AND	Madan	AND	Baik	THEN	Tidak dipakai
24	IF IF		AND		AND	Baik sekali	THEN	Perbaiki
25 26	IF		AND AND		AND AND	Jelek Cukup	THEN THEN	Tidak dipakai Perbaiki
27	ïF		AND	Sulit	AND	Baik	THEN	Perbaiki
28	ïF		AND		AND	Baik sekali	THEN	Perbaiki
29	IF		AND		AND	Jelek	THEN	Perbaiki
30	IF	Validitas	AND	Sedang	AND	Cukup	THEN	Perbaiki
31	IF	rendah	AND	Security	AND	Baik	THEN	Terima
32	IF		AND		AND	Baik sekali	THEN	Terima
33	IF IF		AND		AND	Jelek	THEN	Tidak dipakai
34 35	IF		AND AND	Mudah	AND AND	Cukup Baik	THEN THEN	Perbaiki Perbaiki
36	ÏF		AND		AND	Baik sekali	THEN	Perbaiki
37	ÏF		AND		AND	Jelek	THEN	Perbaiki
38	IF		AND	Sulit	AND	Cukup	THEN	Perbaiki
39	IF		AND	Suit	AND	Baik	THEN	Terima
40	IF		AND		AND	Baik sekali	THEN	Terima
41	IF IF	\/=!:=!:+==	AND		AND	Jelek	THEN	Perbaiki
42 43	IF	Validitas cukup	AND AND	Sedang	AND AND	Cukup Baik	THEN THEN	Terima Terima
44	ïF	Сикир	AND		AND	Baik sekali	THEN	Terima
45	ΪF		AND		AND	Jelek	THEN	Perbaiki
46	IF		AND	Mudah	AND	Cukup	THEN	Perbaiki
47	IF		AND	Mudan	AND	Baik	THEN	Terima
48	IF		AND		AND	Baik sekali	THEN	Terima
49 50	IF IF		AND AND		AND AND	Jelek	THEN	Perbaiki
50 51	IF		AND	Sulit	AND	Cukup Baik	THEN THEN	Terima Terima
52	ïF		AND		AND	Baik sekali	THEN	Terima
53	ΪF		AND		AND	Jelek	THEN	Terima
54	IF	Validitas	AND	Sedang	AND	Cukup	THEN	Terima
55	IF	tinggi	AND	Sedang	AND	Baik	THEN	Terima
56 57	IF		AND		AND	Baik sekali	THEN	Terima
57 58	IF IF		AND AND		AND AND	Jelek Cukup	THEN THEN	Perbaiki Terima
56 59	IF		AND	Mudah	AND AND	Baik	THEN	Terima
60	ïF		AND		AND	Baik sekali	THEN	Terima
61	ïF	\/olid!t==	AND		AND	Jelek	THEN	Perbaiki
62	IF	Validitas sangat	AND	Sulit	AND	Cukup	THEN	Terima
63	IF	tinggi	AND	Guilt	AND	Baik	THEN	Terima
64	IF	-···əə'	AND		AND	Baik sekali	THEN	Terima

Prosiding Seminar Nasional Matematika dan Pendidikan Matematika ISBN: 978-602-70609-0-6 Tuban, 24 Mei 2014

65 66 67 68	IF IF IF	AND AND AND AND	Sedang	AND AND AND AND	Jelek Cukup Baik Baik sekali	THEN THEN THEN THEN	Terima Terima Terima Terima
69	IF	AND		AND	Jelek	THEN	Perbaiki
70	IF	AND	Mudah	AND	Cukup	THEN	Terima
71	IF	AND	Mudan	AND	Baik	THEN	Terima
72	IF	AND		AND	Baik sekali	THEN	Terima

Setelah aturan-aturan dibentuk, maka dilakukan aplikasi fungsi implikasi. Pada metode Mamdani ini fungsi implikasi yang digunakan adalah *MIN*, yang berarti tingkat keanggotaan yang didapat sebagai konsekuensi dari proses ini adalah nilai minimum dari variabel derajat kesukaran, daya beda dan koefisien validitas. Sehingga selanjutnya akan didapat daerah fuzzy pada variabel status soal untuk masing-masing aturan. Input aturan-aturan fuzzy tersebut pada rule editor MATLAB adalah sebagai berikut:



Gambar 6 Rule Editor MATLAB

Langkah 3 : Komposisi aturan.

Pada metode Mamdani, komposisi antar fungsi implikasi menggunakan fungsi *MAX* yaitu dengan cara mengambil nilai maksimum dari output aturan kemudian menggabungkan daerah fuzzy dari masing-masing aturan dengan operator *OR* seperti tertera pada rumus 6. Dengan MATLAB komposisi aturan dapat dilihat pada Gambar 7.

Gambar 7 Rule Viewer pada program Matlab

Langkah 4 : Penegasan (Defuzzifikasi).

Input dari proses defuzzifikasi adalah suatu himpunan fuzzy yang diperoleh dari komposisi aturan fuzzy, sedangkan output yang dihasilkan merupakan suatu bilangan tegas pada domain himpunan fuzzy tersebut. Sehingga jika diberikan suatu himpunan fuzzy dalam range tertentu, maka harus dapat diambil suatu nilai tegas tertentu sebagai output. Pada metode ini, solusi tegas diperoleh dengan cara mengambil titik pusat daerah fuzzy seperti dirumuskan pada rumus (7). Dengan menggunakan Toolbox Fuzzy pada MATLAB hal ini dilakukan dengan mengubah nilai input pada Rule Viewer yang tampak pada Gambar 7.

4. Pembahasan.

IV. PEMBAHASAN

Analisis butir berdasarkan data yang dimiliki menghasilkan nilai koefisien validitas, derajat kesukaran dan daya beda seperti tertera pada Tabel 6.

Tabel 6 Hasil Analisis Butir

no	Koefi	sien Validitas	Tingkat	Kesukaran	Day	a Beda
110	nilai	kategori	nilai	kategori	nilai	kategori
1	0,410	cukup	0,810	Mudah	0,414	Baik
2	0,411	cukup	0,397	Sedang	0,415	Baik
3	0,000	sangat rendah	0,983	Mudah	0,000	Jelek
4	0,330	rendah	0,862	Mudah	0,333	Cukup
5	0,384	rendah	0,759	Mudah	0,388	Cukup
6	0,321	rendah	0,914	Mudah	0,323	Cukup
7	0,638	tinggi	0,845	Mudah	0,643	Baik
8	0,452	cukup	0,879	Mudah	0,456	Baik
9	0,168	sangat rendah	0,931	Mudah	0,169	Jelek
10	0,545	cukup	0,828	Mudah	0,550	Baik
11	0,465	cukup	0,931	Mudah	0,469	Baik
12	0,561	cukup	0,828	Mudah	0,566	Baik

Prosiding Seminar Nasional Matematika dan Pendidikan Matematika ISBN: 978~602~70609~0~6 Tuban, 24 Mei 2014

13	0,250	rendah	0,379	Sedang	0,252	Cukup
14	0,633	tinggi	0,724	Mudah	0,638	Baik
15	0,470	cukup	0,810	Mudah	0,474	Baik
16	0,589	cukup	0,638	Sedang	0,594	Baik
17	0,571	cukup	0,517	Sedang	0,576	Baik
18	0,408	cukup	0,879	Mudah	0,412	Baik
19	0,544	cukup	0,621	Sedang	0,549	Baik
20	0,531	cukup	0,741	Mudah	0,535	Baik
21	0,552	cukup	0,586	Sedang	0,557	Baik
22	0,309	rendah	0,362	Sedang	0,312	Cukup
23	0,263	rendah	0,448	Sedang	0,266	Cukup
24	0,303	rendah	0,345	Sedang	0,306	Cukup
25	0,032	sangat rendah	0,759	Mudah	0,033	Jelek
26	0,158	sangat rendah	0,190	Sulit	0,160	Jelek
27	0,399	rendah	0,586	Sedang	0,403	Baik
28	0,368	rendah	0,448	Sedang	0,372	Cukup
29	0,503	cukup	0,724	Mudah	0,507	Baik
30	0,458	cukup	0,741	Mudah	0,462	Baik
31	0,125	sangat rendah	0,379	Sedang	0,126	Jelek
32	0,534	cukup	0,845	Mudah	0,538	Baik
33	0,160	sangat rendah	0,310	Sedang	0,161	Jelek
34	0,635	tinggi	0,690	Sedang	0,641	Baik
35	0,395	rendah	0,707	Mudah	0,398	Cukup

Koefisien validitas yang didapat pada Tabel 6 menunjukan bahwa soal-soal nomor 3, 9, 25, 26, 31 dan 32 masih memiliki validitas yang sangat rendah karena memiliki nilai koefisien korelasi dibawah 0,2. Untuk soal-soal nomor 7, 14 dan 31 memiliki validitas yang tinggi, sedangkan untuk 10 soal yang lain memiliki tingkat validitas rendah dan 16 soal memiliki tingkat validitas yang cukup. Pada hasil ini tidak terdapat tingkat validitas yang sangat tinggi, ini menunjukan bahwa dari keseluruhan soal yang digunakan dalam evaluasi tersebut belum ada yang benar-benar mengukur apa yang seharusnya diukur pada evaluasi tersebut. Pada kolom Derajat Kesukaran dapat kita lihat bahwa 14 soal sudah masuk dalam kategori sedang dan hanya 1 soal yang masuk kategori sulit yaitu soal nomor 26, sedangkan 20 soal yang lain masuk dalam kategori mudah. Untuk kolom daya beda dapat kita lihat bahwa soal nomor 3, 9, 25, 26, 31 dan 33 memiliki daya beda yang jelek. Ini berarti bahwa soal-soal tersebut belum bisa membedakan kemampuan peserta evaluasi. Selain itu 9 soal memiliki daya beda cukup dan 20 soal memiliki daya beda yang baik. Dari hasil daya beda ini dapat kita lihat pula bahwa belum ada soal yang memiliki daya beda sangat baik. hal ini menunjukan bahwa dalam evaluasi ini belum ada soal yang benar-benar bisa membedakan kemampuan pesertanya.

Selanjutnya dengan mengubah nilai input sesuai nilai-nilai koefisien validitas, derajat kesukaran dan daya beda yang digunakan terdapat pada Tabel 6 didapat nilai tegas dan status soal dengan metode Mamdani sebagaimana tertera pada Tabel 7.

Tabel 7 Status soal menggunakan metode Mamdani dengan bantuan MATLAB

	Metode Mamda		
No	Solusi Tegas	Status Soal	
1	1,850	diperbaiki	
2	1,940	diperbaiki	
3	1,000	ditolak	
4	1,500	diperbaiki	
5	1,720	diperbaiki	
6	1,500	diperbaiki	
7	2,640	diterima	
8	2,090	diterima	
9	0,353	ditolak	
10	2,630	diterima	
11	2,210	diterima	
12	2,630	diterima	

	Metode I	Mamdani
No	Solusi Tegas	Status Soal
13	1,350	diperbaiki
14	2,580	diterima
15	2,190	diterima
16	2,600	diterima
17	2,630	diterima
18	1,850	diperbaiki
19	2,640	diterima
20	2,590	diterima
21	2,650	diterima
22	1,540	diperbaiki
23	1,500	diperbaiki
24	1,520	diperbaiki

	Metode Mamdani			
No	Solusi	Status		
	Tegas	Soal		
25	0,530	ditolak		
26	0,174	ditolak		
27	1,840	diperbaiki		
28	1,730	diperbaiki		
29	2,580	diterima		
30	1,980	diperbaiki		
31	1,350	diperbaiki		
32	2,640	diterima		
33	0,910	ditolak		
34	2,600	diterima		
35	1,830	diperbaiki		

Dari Tabel 7 dapat dilihat bahwa pada penerapan metode Mamdani soal-soal nomor 3, 9, 25, 26 dan 33 dinyatakan ditolak. Jika dilihat lebih rinci soal-soal tersebut tidaklah memenuhi kriteria-kriteria pada analisis butir. Dari hasil tersebut 15 soal yang harus diperiksa dan diperbaiki agar dapat digunakan sebagai alat evaluasi yang baik. Kemudian untuk 15 soal yang lain dinyatakan sebagai soal yang dapat diterima untuk alat evaluasi yang baik karena sudah memenuhi kriteria analisis butir yaitu nilai koefisien validitas yang cukup tinggi, sudah memiliki derajat kesukaran yang sedang dan sudah memiliki daya beda yang baik.

Selanjutnya hasil penentuan status soal dengan metode Mamdani ini kita bandingkan dengan hasil penentuan status soal secara manual sesuai penentuan dengan analisis butir seperti tersaji pada Tabel 8.

Tabel 8 Status soal menggunakan metode Mamdani dan Analisis Butir

Metode	Analisis
Mamdani	Butir
diperbaiki	diterima
diperbaiki	diterima
ditolak	ditolak
diperbaiki	diperbaiki
diperbaiki	diperbaiki
diperbaiki	diperbaiki
diterima	diterima
diterima	diterima
ditolak	ditolak
diterima	diterima
diterima	diterima
diterima	diterima
	Mamdani diperbaiki diperbaiki ditolak diperbaiki diperbaiki diperbaiki diperbaiki diterima diterima ditolak diterima diterima

)	Metode Mamdani	Analisis Butir	No	Metode Mamdani	Analisis Butir
	diperbaiki	diterima	13	diperbaiki	diterima
	diperbaiki	diterima	14	diterima	diterima
	ditolak	ditolak	15	diterima	diterima
	diperbaiki	diperbaiki	16	diterima	diterima
	diperbaiki	diperbaiki	17	diterima	diterima
	diperbaiki	diperbaiki	18	diperbaiki	diterima
	diterima	diterima	19	diterima	Diterima
	diterima	diterima	20	diterima	diterima
	ditolak	ditolak	21	diterima	diterima
	diterima	diterima	22	diperbaiki	diterima
	diterima	diterima	23	diperbaiki	diterima
	diterima	diterima	24	diperbaiki	diterima

No	Metode	Analisis	
INO	Mamdani	Butir	
25	Ditolak	ditolak	
26	Ditolak	ditolak	
27	Diperbaiki	diterima	
28	Diperbaiki	diterima	
29	Diterima	diterima	
30	Diperbaiki	diterima	
31	Diperbaiki	diperbaiki	
32	Diterima	diterima	
33	Ditolak	diperbaiki	
34	Diterima	diterima	
35	Diperbaiki	diperbaiki	

Pada Tabel 8 dapat dilihat bahwa terdapat 11 soal yang memiliki perbedaan status saat ditentukan dengan metode Mamdani dan ditentukan secara manual. Jika diperhatikan soal yang memiliki status berbeda tersebut dinyatakan lebih rendah oleh metode Mamdani. Hal ini dikarenakan pada metode Mamdani nilai-nilai input yang

mendekati batas-batas kategori lebih diberi toleransi, sedangkan pada penentuan secara manual batas-batas kategori tidak memiliki toleransi.

V. KESIMPULAN

Dengan menggunakan analisis butir pada makalah ini didapat nilai koefisien validitas, derajat kesukaran dan daya beda untuk 35 butir soal yang ada. Selanjutnya dengan metode Mamdani nilai koefisien validitas, derajat kesukaran dan daya beda tersebut diolah sehingga didapat status soal yang sesuai untuk masing-masing butir soal yang ada. Saat hasil status soal yang didapat dengan metode Mamdani ini dibandingkan dengan status soal yang ditentukan secara manual dapat dilihat bahwa penentuan dengan metode Mamdani jauh lebih teliti karena setiap variabel benar-benar diperhitungkan derajat keanggotaannya. Setelah mengetahui status soal diharapkan dapat dilakukan perbaikan terhadap evaluasi-evaluasi selanjutnya. Sehingga diharapkan dalam evaluasi-evaluasi yang akan datang butir-butir soal yang terkandung didalamnya sudah memenuhi kriteria untuk digunakan sebagai suatu alat evaluasi yang baik.

II. DAFTAR PUSTAKA

- Arikunto, Suharsimi. 1984. *Dasar-dasar Evaluasi* Pendidikan. Yogyakarta: PT. Bina Aksara.
- Guilford, J.P. & Benjamin Fruchter. 1978. Fundamental Statistic in Psycology and Education. Tokyo: McGraw-Hill.
- Hidayat, Fadjar Noer & Sutrisno, Ashari. 2011. Pemanfaatan Program Pengolahan Angka untuk Analisis Butir Soal dan Pengolahan Hasil Penilaian di SD/SMP. Jakarta: PPPPTK Matematika.
- Kusumadewi, Sri. 2002. Analisis & Desain Sistem Fuzzy Menggunakan TOOLBOX MATLAB. Yogyakarta: Graha Ilmu.
- Kusumadewi, Sri & Purnomo, Hari. 2004. *Aplikasi Logika Fuzzy untuk Pendukung Keputusan*. Yogyakarta: Graha Ilmu.
- Rohmat, Nur. 2013. Rancangan Bangun Aplikasi untuk Menentukan Guru Teladan dengan Metode Fuzzy Mamdani. (http://fuzzymamdani.blogspot.com/, diakses tanggal 22 April 2014).
- Sudijono, Anas. 2007. *Pengantar Evaluasi Pendidikan*. Jakarta: PT Raja Grafindo Persada.
- Susilo, Frans. 2003. *Pengantar Himpunan dan Logika Kabur serta Aplikasinya*. Yogyakarta: Universitas Sanata Dharma.
- Wulandari, Yogawati. 2011. Aplikasi Metode Mamdani dalam Penentuan Status Gizi dengan Indeks Massa Tubuh (IMT) Menggunakan Logika Fuzzy. Program Sarjana. Universitas Negeri Yogyakarta.

